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Abstract: The surface recognition algorithm that determines the types of contact surfaces 
by fusing information collected by the tactile sensor system is proposed. The tactile 
system will be determined from the shape of the object image which can then be 
characterized using the mathematical properties of Quadric surface. This algorithm can 
recognize 3-D objects using a 2-fingered robot gripper, on which tactile sensors are 
mounted. Experiments have demonstrated the reliability of the surface classification 
method and the accuracy of transformations independent of an object’s shape, translation 
and rotation. Copyright 2007. 
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1. INTRODUCTION 

 
A number of approaches have been put forward to 
process the output of tactile sensors in order to yield 
useful characterizations of contact surfaces for 
applications such as characterizing the surface 
textures for different manipulations as well as object 
identification. For example, the output of a single-
point sensor sliding over different textures has been 
used to identify surfaces based on the frequency 
power spectrum of the sensor response (Baglio et al. 
2002). Kim et al. (2005) classified surface textures 
by using a polymer-based microelectromechanical 
systems (MEMS) tactile sensor array using a 
statistical approach. Five simple textures were 
distinguished using a 4 × 4 strain gauge sensor array 
serving as a transduction element. Five of the texture 
arrays were diagonal, enlarged diagonal, check 
pattern, four corner pixels, and perimeter pixels only. 
Texture classification was achieved by using a 
maximum likelihood decision rule. Their final results 
were analyzed by using cross validation to yield an 
acceptable overall performance of 68% correct 
classification, but the experiments cannot cope with 
either rotation nor translation invariants. 

There also exist other techniques for contact 
identification based a tactile sensor. For examples, 
Ibrayev and Jia, (2005, 2004) proposed the 
recognition of low-degree polynomial curves based 
on minimal tactile data. In their application, 
Euclidean differential and semi-differential invariants 
were derived for quadratic and special cubic curves. 
Those invariants, independent of translation and 
rotation, were evaluated over the differential 
geometry at up to three points on a curve. 
Unfortunately, he did not present any implementation 
methods and experimental results.  
 
In this study, an algorithm that can discriminate 
between types of contact surfaces and recognize 
objects at the contact stage is proposed. The type of 
contact surfaces obtained by the tactile system will 
be determined from the shape of the object image 
which can then be characterized using the 
mathematical properties of Quadric surfaces. 
 
With resistive tactile sensor, changes in electrical 
resistance are detected by a tactile sensor made from 
electrically conductive foam.  



 
 

Fig. 1. Sensor Components 
 
The electrical resistance measured between two 
electrodes on the same side of the conductive foam 
(one tactile element) is derived from electrical 
conductivity through a number of simultaneously 
conducting paths. The tactile sensors have been 
developed with the following specifications: One 
finger consists of two 16x4 cells, two 16x2 cells, and 
one 6x2 cells, making up the total 408 cells for the 
two fingers. The width of the fingers is 20 mm, their 
length is 55 mm excluding an aluminum core and 
they have a thickness of 12 mm. 
 
Specifically in this study, the eigenvalue represents 
the matrix properties of the Quadric surface of object 
prototypes calculable from the eigenvalue trajectory 
of the object types. Four different shapes of objects 
have been used to test for the robot’s ability to 
recognize object types. The robot makes contact with 
these objects, and the data from the tactile sensor is 
stored and analyzed. Later, one of the four objects is 
grasped again but with different magnitudes of forces 
and with different positions and rotations. The ability 
to distinguish between object types is calculated. The 
tested objects are an oval object with two major axes 
of 14 mm and 11.7 mm; a cylindrical object with 6.0 
mm in diameter and 20 mm in length; a cube with 
dimensions 10 x 15.9 x 10 mm; and a ball with a 
diameter of 9.5 mm respectively. 
 
 

2. SURFACE INTERPOLATIONS 
 

The shape representation designed for this study is 
both rotation and translation invariant. The Quadric 
surface seems to be a simple, yet adequate, method 
for the proposed tactile sensor as the dimension of 
the tactile array (16x4) cannot represent a complex 
object surface. The basic way of creating Quadric 
surfaces uses least-squares interpolation. Considering 
a general 3-D surface expressed in the contact point 
as 0),,( =zyxf , the general surface function can be 
approximated locally at the contact point as the 
following second order polynomial equation: 
 

0222222222 =+++++++++ kjzhygxfxzeyzdxyczbyax    (1)  
  

Equation (1) can be rewritten in a quadratic form of a 
matrix equation: 0.. =PQPT , where 

 
 
Fig. 2. Fitting Accuracy 
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The properties of the surfaces represented by Q  can 
be translated, rotated and scaled. Given a 4 x 4 
transformation matrix M  of the form developed, the 
transformed Quadric surface *Q  is: 
 

                     11* ..)( −−= MQMQ T                   (2) 
 

The general transformation matrices ( M ) are of the 
Denavit-Hartenberg type combining both translation 
and rotation.  
 
The least-squares problem arises when the 
polynomial is being fit at some data points )},{( ii yx , 
i = 1 , . . . , m , where m  is greater than or equal to 
the number of unknown variables. A further 
generalization of the linear least-squares problem is 
to take a linear combination of basic functions 

)},(),...,,(),,({ 2211 mm yxfyxfyxf . Firstly, the c , 
e , f  and j  variables of Q  are set to zero to get an 
explicit form as (3): 
 

   khygxdxybyaxyxfz +++++== 222),( 22          (3) 
 

z  or ),( yxf represents the tactile data of the tactile 
elements at the location ),( yx . Then, the problem of 
fitting this polynomial can be initiated. In the matrix 
form ZAc ≈ , A  is a square matrix, the unknown c  is 
a column vector, and Z  is also a column vector. The 
least-squares problem becomes: 2min Acz − . A 
solution of the least-squares problem is the solution 
c  to the linear system: zAAcA TT = , that is known as 
a normal equation. The solution of the least-squares 
problem is obtained by analyzing the singular value 
decomposition (SVD) of A .  
 
We have been experimenting with Quadric surfaces 
with an arbitrary set of data points. The fitting 
accuracy evaluation is to use a simple root-mean-
squared (RMS) error function where each error value 
is the distance from a tactile data point to the point on 



the interpolation surface. The bar graphs in figure 2 
are grouped into four different types of object shapes 
and show the mean square distance deviation over 10 
iterations of the experiments on different data sets. 
The random noise was simulated using the Matlab 
‘randn’ function. It generates normally distributed 
random numbers, whose values are in the range [1, 
20] mixing with the tactile data sets.  
 

 
3. MATHEMATICAL PROOF 

 
One property of the matrices of Quadric surfaces is 
that they are symmetric matrices. They can always be 
diagonalized, and their eigenvectors can be chosen to 
form an orthonormal basis with respect to the 
canonical dot product. For example, if we form a 
matrix A  with their eigenvectors as the columns, 
then we will obtain the diagonal matrix as TvAv . 
Rayleigh’s principle (Rayleigh, 1945) states that the 
smallest eigenvalue minλ  coinciding with the 
minimum of  
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The minimizer of R  is an eigenvector with the 
smallest eigenvalue minλ . Likewise, the largest 
eigenvalue and its corresponding eigenvector can be 
found by maximizing R . Let the eigenvalues of A  
be ordered as )(...)( max1321min λλλλλλλ nn ≤≤≤≤ − . 
 
Then, we obtain xxAxxxx n ***1 λλ ≤≤  for 
all nMA∈  where n  is the matrix dimension, 
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this point, we aim to prove that the smallest 
eigenvalue can facilitate contact identification. 
 

In our case, 
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Then, we have 
 

kjzhygxjzhybydxygxdxyaxAvv ++++++++++>=< 22,   
and 1, 222 +++>=< zyxvv , which can finally be 
formulated as: 
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The next step is to minimize )(vR  and obtain minλ , 
to cope with the question of how the Quadric 
parameter can be used for contact classification.  
 
In considering the problem of minimizing a 
polynomial fraction on nR , it is known to be difficult 
even for degree-2 polynomials. Jibetean and Laurent 
(2005) have proposed a method for computing tight 
upper bounds based on perturbing the original 
polynomial and using semidefinite programming. 
Their works are on global optimization methods for 
multivariate polynomials and rational functions, and 
their method can be applied to our problem. 
According to their theory, it involves the following 
problem: 
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Regarding the terminology, they use the infimum 
( inf ) instead of the more common minimum (min) 
simply to stress that the optimal value may not be 
attained exactly in nR  but may only be approached 
asymptotically.  
 
Nevertheless, it is important to have a procedure 
which computes, in principle, the global optimum. 
Jibetean’s interest is in designing algorithms which 
guarantee finding the global solution. Her method is 
based on the relation between positive polynomials 
and the sum of squares of polynomials. In fact, in this 
approach the effort is directed towards finding a real 
number α  such that nRxxqxp ∈∀≥− ,0)()( α , where 

)(xp and )(xq are the given polynomials. Obviously 
the largest α satisfying the condition is the infimum 
of )(/)( xqxp .  
 
Moreover, she rewrote the rational optimization 
problem into a semi-define optimization problem 
(SDP) which is known to have good computational 
complexity. Actually, in general she obtains SDP as 
the relaxation of the original problem, which gives a 
lower bound for the solution of the original problem. 
Firstly, she rewrote the problem as an SDP by 
denoting )()()( xqxpxF α−= . If the total degree of 
F is even where the total degree is d  ( d ; power of 
polynomial), she can find a matrix Q  such 
that QzzxF T=)( , [ ]d

nn xxxxxxz ,....,,,...,,,1 2121= . The 
value z  contains all monomials of the variables 

nxx ,...,1 having its degree less than or equal to d . 
Obviously, if such Q  exists, then it is a symmetric 
matrix. In the conclusion, equation (6) can be 
rewritten as: 

 

                  0)()()( ≥−== xqxpQzzxF T α  .             (7) 
 



The matrix Q  can always be constructed. If 0fQ , 

then 0)( ≥xF , nRx ∈∀ . A positive semidefinite 
matrix, or 0fQ , is a matrix all of whose eigenvalues 
are nonnegative. The Q  matrix  is called a positive 
semidefinite matrix if .0≥QxxT  It means for every 
points x  in the vector space introduced, QxxT  is a 
positive value. Referring to (5), if we define 

yxxx == 21 , and zx =3 , then we get 
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Using the method of Jibetean , then our problem can 
be arranged into 
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Then, it can be re-arranged as:  
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Based on (7), it can be observed that one solution is 

0=QxxT which is the definition of a Quadric surface. 
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Introducing the Quadric parameter into Rayleigh’s 
quotient to finding the minimization of )(vR based 
Jibetean’s method leads the result to be 0=α , at 
least in one case. The conclusion of these proofs can 
confirm that the smallest eigenvalue of the Quadric 
parameter is identical with the Quadric parameter 
itself. This means the smallest eigenvalue of the 
Quadric parameter yields the identical characteristic 
of the Quadric shape. Every symmetric matrix has 
this property, including its covariance which is also a 
symmetric matrix. In order to achieve more noise 
tolerance in real applications, using covariance of Q 
in finding the smallest eigenvalue seems to be 
reasonable. Richard and Stephen (2000) also have a 
proof on the covariance matrix in terms of the effect 
of the noise rising in all the eigenvalues by 2σ , where 
σ  is the standard deviation of a random noise. 
Moreover the variation of eigenvalue will coincide 
with +− +≤≤+ bb nnn

22 σλωσλ , where 2)1( yb ±=± , 
TNy /= , N  is the dimension of the vector space, 

and T is the number of samples. 
 
In the experiment, the training procedure is done to 
check classification performance, as shown Table 1. 
The Quadric surface properties are modified by 

multpilying with transformation matrix for 
translation, rotation and scaling operations. 
 

Table 1 Procedure for the evaluation of eigenvalue 
trajectories 

 
Object 

   
Quadric 
Surface 

    
Scale Ratio 0.1 to 4 0.1 to 4 0.1 to 4 0.1 to 4 

Translation 
in x-axis 

-2 to 2 -2 to 2 -2 to 2 -2 to 2 

Translation 
in y-axis 

-4 to 4 -4 to 4 -4 to 4 -4 to 4 

Rotation 
x-axis  

0 to 2π 0 to 2π 0 to 2π 0 to 2π 

Rotation 
y-axis 

0 to 2π 0 to 2π 0 to 2π 0 to 2π 

Rotation 
z-axis  

0 to 2π 0 to 2π 0 to 2π 0 to 2π 

 
For a matrix of 4x4, there are four eigenvalues, the 
smallest one being in the order of 10-3, and the largest 
one in the order of 102. Thus, the eigenvalues in the 
first three columns ordered ascendingly are not used 
while the one in the last column is utilized because it 
is the smallest eigenvalue. 
 
This experiment applies graphical techniques to 
study the behavior of eigenvalues after the matrix 
elements change. This change normally requires 
numerical analysis and perturbation theory, but the 
technique called “eigenvalue trajectory analysis”, 
illustrated in Figure 3, is more applicable and will be 
adopted. This graph shows the smallest eigenvalue of 
the covariance matrix of the Quadric surface property 
independent of translations in all two axes, of 
rotations around any axis, and of scalable values. 
After the trajectory of the eigenvalue is derived, it 
can be used to classify to the contact surface of 
object by matching the level of eigenvalue of surface 
property matrix belonging to the object prototype. 
 
An important tool for describing the eigenvalues of 
square matrices is the characteristic polynomial. 
 

 
 
Fig. 3. Eigenvalue trajectories of Quadric parameters 

under different tested objects 



Eigenvalues of large matrices should not be 
computed using the characteristic polynomial. The 
Abel–Ruffini theorem implies that the roots of high-
degree polynomials cannot be expressed simply 
using thn  roots (Dehn,1930). Moreover, although 
effective numerical algorithms for approximating the 
roots of polynomials exist, small errors in the 
eigenvalues can lead to large errors in the 
eigenvectors. Then, the eigenvalues using the 
characteristic polynomial give unexpected results in 
our tests. General algorithms for finding eigenvectors 
and eigenvalues are usually iterative methods, but 
only a few iterative methods can provide round-off 
errors small enough to be useful for our purposes. 
 
The easiest method is the power method in which a 
random vector is chosen and used it to comput a 
series of increasing power matrix. The aim of the 
power method is to find only the largest eigenvalue. 
The problem with this method is that if the data in 
matrix A  has errors, the square of mA will exacerbate 
them leading to higher round-off errors. Although the 
modified method enables estimation of the smallest 
eigenvalue, these two limitations are inevitable. 
 
Even though the level enabling classification of 
objects is only in the order of 10-3, the computing 
method to find an eigenvalue needs a very small 
round-off error. Powerful methods such as the QR 
algorithm used in the LaPACK library (Linear 
Algebra Software Package), have good classification 
ability since a precise resolution within the order of 
10-3 is possible with very small round-off errors.  
 
 

3. EXPERIMENT EVALUATIONS 
 
The random noise associated with the interpolation in 
a real application can generate variations in 
eigenvalues. This requires an investigation into the 
eigenvalue trajectory under random noise.  
 
 
4.1 Effects of Random Noise on Eigenvalue      

Trajectory 
 
Figure 4 indicates that noise on the trajectory 
dampened some graph levels during the test 
experiments. Nonetheless, it did not reduce contact 
classification capability with respect to the overall 
error growth. Contact classification can still be 
achieved through level checking. Noise was 
simulated using a random function with a normal 
distribution with values in the range [1, 20]. Then, 
they were added to every tactile data element. All of 
the eigenvalue trajectories were tested with ranging 
noise levels, for 10 iterations. The noise levels for all 
tactile elements were randomly and simultaneously 
increased, yet only to the maximum values of 8% of 
ADC’s maximum (255), and the performance of 
algorithms was demonstrated as shown in figure 4. 
 

 
 
Fig. 4. Noise Tolerances 
 
This leads to the conclusions that if the noise level is 
kept below 8% it will not be statistically meaningful 
for, nor affect, classification. By experimenting, it is 
also clear that classification capability is reduced if 
the random noise peaks are greater than 8% of the 
ADC’s maximum value. Invalid classification was 
tested by increasing noise to a level higher than 8%, 
and consequentially, the crossing levels of eigenvalue 
trajectory appeared. The use of a noise filter on the 
tactile data reduces the effect of noise on the 
eigenvalue trajectory, and such a filtration must be 
performed before surface interpolation was applied. 
 
 
3.2 Border of classification 
 
The principal idea used to classify the contact is in 
the matched threshold of the eigenvalue trajectory. 
For example, in figure 5, the ‘a’ level can be used to 
distinguish between object A and object B; the ‘b’ 
level can be used to distinguish between object A and 
object C, and so on. As formerly mentioned, random 
noise has an effect on the eigenvalue trajectory. The 
windows of different sizes (A, B, C) have their uses 
on defining different thresholds for the eigenvalue 
trajectory, and classification by thresholds has to be 
adjusted dynamically.  
 

 
 

Fig. 5. Windows of Margin 
 



 
 
Fig. 6. Mixed threshold  
 
Also, some object shapes are very sensitive to noise 
which leads them to be incorrectly identified in the 
interpolation process. As displayed in figure 6, object 
A and object B yield little difference in terms of the 
smallest eigenvalues, which lead to a classification 
failure. In reality, the noise mixed with the tactile 
data also has an effect on the smallest eigenvalue. If 
the window size is too small, then the added noise 
will make the classification capability approach zero. 
 
According to figure 4, the thresholds of object 1, 
object 2, object 3, object 4 correspond with the oval, 
cylindrical, cube (box) and ball shapes, respectively. 
Each object has a different eigenvalue in the 
eigenvalue trajectory with no particular increasing or 
decreasing order in terms of their levels. This can 
lead to misclsssification in the case of two very close 
threshold values. 
 
Table 2 demonstrates the test results, whose testing 
were repeated ten times on each object shape. The 
classification results reveal correct recognitions as 
well as misrecognitions. These differences may 
indicate that there are indeed limitations on the 
ranges of classification due to the similarity of test 
objects, fitting performance, and random noise. 

 
Table 2 Statistic error of classification 

Percent of misclassify Object 
Features Oval Cylinder Box Ball 

Percent 
Error 

(1) Oval 0 0 10% 0 10% 
(2) Cylinder 0 0 0 0 0% 
(3) Box 10% 0 0 0 10% 
(4) Ball 0 0 0 0 0% 

 
For examples, the oval object can be misclassified as 
a box object by 10%. Yet, the oval may be less likely 
misclassified as a cylinder object, because their 
thresholds are not in neighbouring ranges. The 
experiments have also clearly shown that 
classification capability reduces if the random noise 
peaks are greater than 8% of the ADC’s maximum 
value. 
 
 

Invalid classification was achieved by increasing 
noise levels above 8%, and consequentially. As a 
result, contact classification cannot be achieved by a 
simple level checking. 
 
 

4. CONCLUSION 
 
A technique for recognizing objects using tactile 
sensor arrays, and a method based on the Quadric 
parameter for classifying grasped objects is 
described. It has been shown that the covariance 
matrix from the parameter of Quadric surfaces by 
interpolation of tactile data may be formulated by 
eigenvalue decomposition and can reflect under all 
contact geometries. The smallest component of an 
eigenvalue can be used to estimate and identify 
object shapes without using any other references, 
whereas classification is used as the principal 
indication of surface identity. The shape reflectance 
parameter pertaining to (unique to) each surface may 
be recovered and identified. It has been shown that 
the reliability of the surface classification method and 
the accuracy of transformation are independent of 
object shapes.  
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